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a b s t r a c t

In high-dimensional data analysis such as in genomics, repeated univariate regression
for each variable is utilized to screen useful variables. However, signals jointly detectable
with other variables may be overlooked. While the saturated model using all variables
may not work in high-dimensional data, based on prior knowledge, group-wise analysis
for a pre-defined group is often developed, but the power will be limited if the
knowledge is insufficient. A flexible test procedure is thus proposed for conditional mean
applicable to a variety of model sequences that bridge between low and high complexity
models as in penalized regression. The test is based on the model that maximizes a
generalization of the Yanai’s generalized coefficient of determination by exploiting the
tendency for the dimensionality to be large under the null hypothesis. The test does not
require complicated null distribution computation, thereby enabling large-scale testing
application. Numerical studies demonstrated that the proposed test applied to the lasso
and elastic net had a high power regardless of the simulation scenarios. Applied to
a group-wise analysis in real genome-wide association study data from Alzheimer’s
Disease Neuroimaging Initiative, the proposal gave a higher association signal than the
existing methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Currently, large-scale high-dimensional data are being collected and analyzed in almost all fields including genomics,
edicine, biology, agriculture, ecology, neuroscience, marketing, social science, and economics. It is necessary to extract
nly useful information for hypothesis generation. However, ubiquitous statistical tool applicable to such huge data is
imitedly available. Univariate analysis for each variable with a target response variable is frequently used for screening
urposes, e.g. in genome-wide, epigenome-wide and phenome-wide association studies (Risch and Merikangas, 1996;
akyan et al., 2011; Bush et al., 2016) and in a voxel-wise test for functional magnetic resonance imaging data
nalysis (Friston et al., 1994). Similarly, a genome-wide environment interaction study explores the interaction effect
f each genetic variant and environment factor pair (Kraft et al., 2007). Those tests examine the effects under a given
lternative model represented by a few parameters (e.g. a single genetic variant is independently associated with disease),
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pply/ADNI_Acknowledgement_List.pdf.
2 Supplementary material including Supplementary Tables and Figures is attached.
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ut they might be insufficient to describe complex phenomenon. To extract new findings with minimal prior knowledge,
ore complex models would be needed.
Alternative approaches include group-wise analysis for pre-defined groups of variables. For example, in genome-wide

ssociation studies, nearby variants are grouped and tested separately for each group (Schaid et al., 2002; Dudbridge,
008; Madsen and Browning, 2009; Wu et al., 2011; Ueki et al., 2017). Similarly, a multi-voxel test called a searchlight
apping is proposed in functional magnetic resonance imaging data analysis (Kriegeskorte et al., 2006). However, test

s underpowered if the saturated model is excessively redundant compared to the genuine structure. The power can be
ained by custom-made tests using prior knowledge but is limited if the knowledge is incomplete. The incompleteness is
ften unavoidable when exploring various candidate variables. Data-adaptive approaches have been proposed in genomic
tudies (Sham and Curtis, 1995; Hirotsu et al., 2001; Freidlin et al., 2002; González et al., 2008; Li et al., 2008; Hothorn
nd Hothorn, 2009; Joo et al., 2010; Zang and Fung, 2011; Lee et al., 2012; Ueki, 2014). However, these approaches often
equire complicated null distribution calculation either analytically or computationally, or otherwise are only applicable
o low-complexity models. It is helpful if there is a framework that fits existing highly data-adaptive procedures to a
ypothesis test without both custom-made modification and complicated null distribution computation.
This paper develops a flexible data-driven test procedure for conditional mean, directly applicable to various existing

tatistical models that bridge between low and high complexity models via a tuning parameter as in penalized regression.
he test is based on the model that maximizes the Yanai’s generalized coefficient of determination (Yanai, 1980; Cadima
nd Jolliffe, 2001) generalized to any modeling procedure. It is proportional to the covariance between a response variable
nd its predicted value divided by the square root of the generalized degrees of freedom (Ye, 1998). Under the null
ypothesis of no effect, the selected model tends to have a large dimensionality unlike the familiar model selection
riteria (Akaike, 1974; Schwarz, 1978; Craven and Wahba, 1978; Nishii, 1984; Foster and George, 1994; Shao, 1997; Chen
nd Chen, 2008). Exploiting the behavior under the null hypothesis, type I error is approximately controlled based on
n asymptotic result of Wang and Cui (2013) without complicated null distribution computation using a significance
hreshold for the saturated model (or the largest model in the sequence). Since it is simple and simulation-free in
omputing p-value, the proposed method is suitable for effect discovery in high-dimensional data which requires a large
umber of tests.
Through simulation studies for group-wise test problems, the proposed test adapted to the lasso (Tibshirani, 1996),

idge (Hoerl and Kennard, 1970) and elastic net (Zou and Hastie, 2005) showed higher power across a variety of scenarios
n comparison with the existing methods including univariate regression test, saturated model test and tests assuming
andom effects (Wu et al., 2011; Lee et al., 2012). Applied to a group-wise analysis for a real genome-wide association
tudy data from Alzheimer’s Disease Neuroimaging Initiative (ADNI), the proposed test showed a higher association signal
t the known risk variant than the existing methods.

. Methods

.1. Preliminary

Consider a situation where n observations are obtained together with a response variable y = (y1, . . . , yn)T and d
xplanatory variables X = (X1, . . . ,Xd) where X j = (x1j, . . . , xnj)T . Then, consider a set of regression models indexed
y a tuning parameter λ, gλ(y) which models the conditional expectation µ = µ(X) = E(y|X) given X . It contains
odels typically ordered by the extent of complexity controlled by λ, which eventually tends to the saturated model
s λ → 0. The saturated model is given at λ = 0, i.e. g0(y) = PXy, where PX is the projection matrix onto X . The model
equence considered includes the lasso, ridge regression, elastic net, generalized lasso, and many other regression models
n statistics or machine learning.

.2. Yanai’s generalized coefficient of determination and its potential use for hypothesis testing

The Yanai’s generalized coefficient of determination is a measure of similarity between two linear spaces and has
een used for variable selection in principal component analysis (Jolliffe, 2002). For two linear subspaces spanned by Y
a matrix with size n× c) and X (a matrix with size n×d), let the corresponding projection matrixes be PY and PX . Then,
he Yanai’s generalized coefficient of determination, r(Y ,X) say, is given by

r(Y ,X) =
tr(PYPX )
c1/2d1/2

.

Since c = tr(PY ) = tr(P2
Y ) and d = tr(PX ) = tr(P2

X ), by the Cauchy–Schwarz inequality r(PY , PX ) ≤ 1 and the equality
olds if and only if PY = PX . Hence, the value close to 1 indicates a similarity between the two linear spaces. Notably,
(Y ,X) can be used even if the number of dimensions differs, i.e. c ̸= d.
Next, consider the special case with c = 1 for Y . The idea is in principle applicable to model selection in least-squares

regression through the projection matrix representation. To this end, consider a variable selection problem with response
variable y and candidate d explanatory variables X . Instead of y and X , centered variables ỹ = Q y, µ̃ = Q µ, and
1n 1n
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= Q 1nX are considered. Here, Q 1n = In − n−11n1T
n , In is the nth identity matrix, and 1n is the n-vector of ones. For a

iven subset of d variables, s ⊂ {1, . . . , d}, the Yanai’s generalized coefficient of determination can be written as

r (̃y, X̃ s) =
tr(P ỹP X̃ s )

|s|1/2
=

∥̃y∥
−2̃yTP X̃ s ỹ
|s|1/2

=
∥̃y∥

−2̃yT X̃ sβ̃s

|s|1/2
, (1)

where X̃ s denotes the sub-column matrix of X̃ corresponding to the index set s, |s| denotes the cardinality of s, and β̃s is
the least-squares estimate of regression of ỹ onto X̃ s. The value r (̃y, X̃ s) close to 1 means that P X̃ s ỹ is a good modeling
rocedure. The quantity ỹT X̃ sβ̃s in the numerator is proportional to the sample covariance between the observation ỹ
nd the fitted value X̃ sβ̃s, and is optimistic if it is used as a measure of model fit. The denominator, |s|1/2, penalizes
he apparent goodness, allowing to evaluate the model by accounting for model complexity. The metric is a geometric
uantity in the sense that it is invariant by replacing X̃ by X̃B with a d × d regular matrix B, i.e. r (̃y, X̃) = r (̃y, X̃B).
From now on, the Yanai’s generalized coefficient of determination is explored from a different perspective, i.e. appli-

ation in hypothesis testing. Consider the null hypothesis H0,n : µ = α1n, in the regression model, y = µ + ϵ, in which
is some constant and ϵ ∼ N(0, σ 2

0 In), and ϵ is independent of µ. Then, since E (̃yTP X̃ s ỹ) = σ 2
0 |s|, the expectation of

(̃y, X̃ s) is approximately proportional to |s|1/2. It is monotonically increasing as the model dimensionality |s| increases.
hus, noting that ∥̃y∥

2 does not depend on s, it is expected that the Yanai’s generalized coefficient of determination tends
o select a much larger model under the null hypothesis of no effect µ = α1n. Specifically, for a given model sequence
ith large d, M = {P X̃ s ỹ, |s| = 1, . . . , d}, the model that achieves the maximum of r (̃y, X̃ s) among the model sequence
ends to be close to the saturated model, i.e. its dimensionality is close to d with high probability. On the other hand,
nder the alternative hypothesis of µ ̸= α1n, the expectation of r (̃y, X̃ s) does not necessarily increase monotonically,
nlike the case where the null hypothesis is true. For example, if P X̃ s µ̃ = µ̃, or the model completely recovers µ̃, it holds
hat E (̃yTP X̃ s ỹ) = σ 2

0 |s|+∥µ̃∥
2. Then, the expectation of r (̃y, X̃ s) is approximately proportional to σ 2

0 |s|1/2 +∥µ̃∥
2/|s|1/2. If

µ̃∥
2 is sufficiently large, the second term dominates the first term, and the model with the smallest |s| is chosen, which is

ontrasted from the case of null hypothesis where the saturated model tends to be chosen. Hence, the behavior under the
lternative differs from that under the null hypothesis. The above perspective suggests the potential use for hypothesis
esting of the null hypothesis µ = α1n. That is, the model that gives the maximum of r (̃y, X̃ s) is tested by referring to
he saturated model, which is the model selected with probability tending to 1 under the null hypothesis. The following
ection details the testing procedure for more general modeling procedures.

.3. Testing procedure

To apply the above arguments for least-squares regression model sequence to more general modeling procedures, a
ew testing procedure is proposed by generalizing the Yanai’s generalized coefficient of determination (1) while inheriting
he property described in the last paragraph of the previous section. The generalization is simply replacing the degrees
f freedom in the denominator by the generalized degrees of freedom. Let {gλ (̃y) : λ ≥ 0} be a model sequence indexed
y a tuning parameter λ ≥ 0, where the saturated model at λ = 0 is given by g0 (̃y) = P X̃ ỹ. Then, the generalized version
or a modeling procedure gλ is given by

r (̃y, gλ) =
∥̃y∥

−2̃yTgλ (̃y)
gdf0(gλ)1/2

, (2)

where gdf0(gλ) = Eµ̃=0{̃yTgλ (̃y)}, and Eµ̃=0 indicates the expectation under the assumption of µ̃ = 0. The quantity gdf0(gλ)
oincides with the generalized degrees of freedom of gλ defined by cov{̃y, gλ (̃y)} = E{(̃y−µ̃)Tgλ (̃y)} (Ye, 1998; Efron, 2004)
nder the null hypothesis µ = α1n because of µ̃ = Q 1nµ = 0. For least-squares regression with explanatory variables
s, the generalized degrees of freedom is given by tr(P X̃ s ) = |s| (Ye, 1998), and hence, (2) reduces to the original Yanai’s
eneralized coefficient of determination (1). Although (2) is no longer interpreted as a model-fit measure, it possesses a
roperty that the expectation of r (̃y, gλ) under the null hypothesis µ = α1n is approximately proportional to gdf0(gλ)1/2.
herefore, by assuming that gdf0(gλ) ≤ d, because of the assumption g0 (̃y) = P X̃ ỹ, the model that achieves the maximum,
axλ r (̃y, gλ), may have a large dimensionality and is close to that of the saturated model with high probability. (The
ssumption that gdf0(gλ) ≤ d may hold for constraint linear regressions including ridge regression and lasso (Kaufman and
osset, 2014, Theorem 2).) Similarly, for the alternative hypothesis of µ ̸= α1n, assuming that gλ (̃y) ≈ µ̃, the expectation
f r (̃y, X̃ s) is approximately proportional to ∥µ̃∥

2/gdf0(gλ)1/2, and the model with the smallest gdf0(gλ)1/2 is chosen. The
bove heuristic arguments are made rigorous in the next subsections.
The proposed testing procedure is described in detail. First note that, at λ = 0,

∥̃y∥
2d1/2r (̃y, gλ)/d

σ̂ 2
y

=
d1/2̃yTg0 (̃y)/d
gdf0(g0)1/2σ̂ 2

y
=

∥P X̃ ỹ∥
2/d

σ̂ 2
y

, (3)

where σ̂ 2
y = ∥Q (1n,X)y∥

2/(n − d − 1). This is the usual F-statistic. If y ∼ N(α1n, σ
2
0 In), (3) follows an F-distribution with

(d, n−d−1) degrees of freedoms. It is also expected that the generalized degrees of freedom that achieves its maximum,
3
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axλr (̃y, gλ), is close to d with high probability under the null hypothesis if d is large. Then, the proposed test procedure
is to reject the null hypothesis µ = 0 if

∥̃y∥
2d1/2r (̃y, ĝλ∗ )/d

σ̂ 2
y

> F̄−1
α (d) if gdf0(ĝλ∗ ) < d1−γ ,

∥P X̃ ỹ∥
2/d

σ̂ 2
y

> F̄−1
α (d) if gdf0(ĝλ∗ ) ≥ d1−γ , (4)

where F̄−1
α (d) is the (1−α)th quantile of the F-distribution with (d, n−d−1) degrees of freedoms at a given significance

hreshold α, and λ̂∗
= argmaxλr (̃y, gλ).

Here, γ is a given fixed constant in (0, 1), which plays a role to judge whether the selected model is close to the
aturated model. If the selected model is regarded as the saturated model, the test statistic switches to that under the
aturated model. Type I error control and power are considered in the following subsections.
In practice, generalized degrees of freedom are not always available in an exact form, but instead an estimate is

vailable. For the ridge regression, gλ (̃y) = P λ̃y where Pλ = X̃(X̃ T X̃ + nλId)−1X̃ T
, gdf0(gλ) = tr(Pλ), which can be used

xplicitly. For the lasso, gdf0(gλ) = E(|Aλ|) holds (Zou et al., 2007; Tibshirani and Taylor, 2012; Dossal et al., 2013), where
λ is the active set at a given tuning parameter λ, hence, the cardinality |Aλ| can be used as an estimate. More generally,
or the elastic net with a tuning parameter vector λ = (λ1, λ2) (the first and second elements are for L1- and L2-norms),
r{X̃Aλ

(X̃ T
Aλ
X̃Aλ

+ nλ2I |Aλ|)−1X̃ T
Aλ

} can be used as an estimate, where Aλ is the active set at a given tuning parameter λ as
efore. The generalized degrees of freedom for other models are given in Chen et al. (2019). If no closed-form estimate
s available, simulation-based method is a possible approach (Ye, 1998).

.4. Type I error control

Here, type I error control for the proposed procedure is given under a high-dimensional regression model with the
et up being a special case of Wang and Cui (2013) page 136 in which regression coefficients are zero. Specifically,
hey consider a linear regression model, yi = α + xiβ + ϵi for i = 1, . . . , n, where xi = (xi1, . . . , xid), x1, . . . , xn are
ndependent and identically distributed with Σx = var(xi) assumed to be positive definite, and ϵ1, . . . , ϵn are independent
nd identically distributed error with E(ϵi) = 0 and var(ϵi) = σ 2

0 , β is the d-dimensional vector of regression coefficients,
nd α is a nuisance intercept parameter. Note that the error distribution is not necessarily normal. Without normality
ssumption of ϵis, Theorem of Wang and Cui (2013) implies that the statistic (3) with the F distribution as the null
istribution for testing H0 : β = 0 still gives a valid type I error control asymptotically as n → ∞ with d/n tending to
constant in (0, 1). The test statistic (3) is termed as the generalized F-statistic, cf. Eq. (2.3) or Eq. (3.1) of Wang and
ui (2013). (Note that the name ‘‘generalized F statistic’’ comes from the non-normal error distribution and penalized
egression is not considered in Wang and Cui (2013).) To be specific, the following conditions taken from Wang and Cui
2013) are assumed.

(C1) xi is linearly generated by a m-variate random vector z i = (zi1, . . . , zim)T so that xi = Γz i + µx, where Γ is a d × m
matrix for some m ≥ d such that ΓΓT

= Σx, each zil has finite 8-th moment, E(z i) = 0, var(z i) = Im, E(z4ik) = 3+∆

and for any
∑k

ν=1 lν ≤ 8, E(z l11i1z
l2
1i2

· · · z lk1ik ) = E(z l11i1 )E(z
l2
1i2

) · · · E(z lk1ik ), where ∆ is some finite constant.
(C2) µ4 = E(ϵ4

i ) < ∞;
(C3) ρn = d/n → ρ ∈ (0, 1) as n → ∞.

Under the null hypothesis β = 0 and the assumptions (C1)–(C3), the following statement holds, which is a special case
f Theorem of Wang and Cui (2013) (i.e. δβ2 = 0 and p1 = 0 in their notation):

P
{

∥P X̃ ỹ∥
2/d

σ̂ 2
y

> F̄−1
α (d)

}
= α + o(1). (5)

In the case that the above type I error control of the generalized F-test holds, type I error control of the proposed test is
investigated. Consider a model sequence indexed by a tuning parameter λ ≥ 0, gλ (̃y), which gives the saturated model
by g0 (̃y) = P X̃ ỹ at λ = 0. To investigate the type I error, the null hypothesis µ = α1n is assumed. Candidate models are
considered at J fixed discrete points 0 = λ1 < · · · < λJ . Let g(j) = gλj for j = 1, . . . , J , and the corresponding generalized
degrees of freedom are denoted by gdf(1), . . . , gdf(J) with gdf(1) = gdf0(g0) = tr(P X̃ ) = d, the degrees of freedom for the
aturated model. The following theorem describes the asymptotic control of type I error rate.

heorem 1. For the model sequence {g(j) : j = 1, . . . , J} such that g(1) (̃y) = P X̃ ỹ , and, for each j, ỹTg(j) (̃y) ≥ 0 almost surely.
et γ be a given constant in (0, 1) and assume that qα(d) ≥ d. Then, under conditions (C1)–(C3) with n → ∞, the type I error
f the test procedure (4) is asymptotically no greater than α.

Note that the assumption that q (d) ≥ d is true if α is sufficiently small.
α

4
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.5. Power consideration

In this section, power analysis of the proposed test is given under which the effect size increases as n → ∞, where
also increases at the same rate of n as in the above type I error analysis. Consider a model sequence, gλ : ỹ ↦→ gλ (̃y),

ndexed by a tuning parameter λ ≥ 0, in which g0 gives the fit under the saturated model. Here, it is assumed that
= µ + ϵ where ϵ1, . . . , ϵn are independent and identically distributed error with E(ϵi) = 0 and var(ϵi) = σ 2

0 . In the
ollowing argument, as in the previous sections, the notation ·̃ denotes the centered quantity. In this case, for instance,
µT1n = 0 holds. Let λ∗

= argminλ∥µ̃ − gλ(µ̃)∥2. The following technical conditions are imposed throughout:

(D1) for any λ ≥ 0, gλ is Lipschitz, i.e. there exists a constant Kλ > 0 such that ∥gλ (̃y) − gλ (̃y + ∆)∥ ≤ Kλ∥∆∥ for any ỹ
and ∆.

(D2) for any λ ≤ λ∗, there exist a constant Cλ > 0 such that µ̃Tgλ(µ̃) = Cλ∥µ̃∥
2, and a constant Dλ > 0 such that

∥gλ(µ̃)∥2
= Dλ∥µ̃∥

2.
(D3) gdf0(gλ∗ ) = O(1), and gdf0(gλ) ≥ gdf0(gλ∗ ) for any λ ≤ λ∗.
(D4) ∥µ̃∥

2
= nνn where νn → ∞ as n → ∞.

(D1) assumes that the modeling procedure is a Lipschitz function. (D2) implies that covariance between µ̃ and the
fitted result from the modeling procedure applied to µ̃ can grow at the same rate of ∥µ̃∥

2 for λ ≤ λ∗ (i.e. the optimal
model or the models larger than the optimum), which is the rate for gλ such that gλ(µ̃) = µ̃, and similarly for ∥gλ(µ̃)∥2.
(D3) assumes that the generalized degrees of freedom of the modeling procedure does not depend on d at the optimum
(i.e. the model sequence can capture the underlying data structure in a parsimonious way), and also it is no greater than
the generalized degrees of freedom at λ ≤ λ∗. (D4) assumes that the average effect size, ∥µ̃∥

2/n, increases as a function
f n. Then, the following statement holds.

heorem 2. Under conditions (D1)–(D4), for a given constant γ in (0, 1), the proposed test is asymptotically more powerful
han the generalized F-test under the saturated model.

emark. Condition (D2) is illustrated with two examples. First example is the least-squares regression on the sub-column
atrix X̃ s of X̃ , say gs(µ̃) = P X̃ s µ̃. If µ̃ is represented by a linear combination of X̃ s, then P X̃ s µ̃ = µ̃. In this case, µ̃Tgs(µ̃) =

µ̃∥
2, and ∥gs(µ̃)∥2

= ∥µ̃∥
2, which implies that condition (D2) is fulfilled. Second example is the ridge regression,

λ(µ̃) = X̃(X̃ T X̃ + λId)−1X̃ T
µ̃. Consider the singular value decomposition X̃ = UΞV T , where U and V are orthogonal

matrixes of sizes n × n and d × d, and Ξ is the n × d rectangular diagonal matrix with diagonal entries being singular
values of X̃ . Let ũ = U T µ̃. Assume that X̃ is of full rank and that d < n. Let the minimum and maximum singular values

of X̃ be ξmin and ξmax, respectively. Then, gλ(µ̃) = UΞV T (VΞTΞV T
+ λVV T )−1VΞT ũ, and µ̃Tgλ(µ̃) =

∑d
j=1

ξ2j

ξ2j +λ
(̃u)2j ∈

[
ξ2min

ξ2min+λ
∥µ̃∥

2,
ξ2max

ξ2max+λ
∥µ̃∥

2
]. Similarly, ∥gλ(µ̃)∥2

=
∑d

j=1

(
ξ2j

ξ2j +λ

)2

(̃u)2j ∈ [

(
ξ2min

ξ2min+λ

)2
∥µ̃∥

2,

(
ξ2max

ξ2max+λ

)2
∥µ̃∥

2
]. Consequently,

f ξmin > 0, condition (D2) is fulfilled.

. Simulation studies

Simulation studies for testing association between a set of d variables X and a response variable y were conducted.
ample size n and number of variables d were set as n = 400κ and d = 50κ for three cases of κ = 1, 2, and 3. The
roposed testing procedure was adapted to the lasso, ridge, and elastic net by glmnet package for R, where generalized
egrees of freedoms were calculated as described earlier. For γ in (4), which judges the closeness between the selected
odel and the saturated model, γ = 0.01 was considered throughout. (The results with γ = 0.1 were provided in
upplementary material.) Competing methods were as follows.

nivariate regression test minimum of d p-values from univariate (generalized) F-test for each variable adjusted by the
Bonferroni correction (i.e. raw p-value multiplied by d) were used as the representative p-value.

aturated regression test (generalized) F-test for the analysis of variance under the normal model using all d variables
simultaneously.

Sequence kernel association test a score test under a random effect model for d regression coefficients developed for
group-wise test of genotype data implemented in SKAT package for R.

urden test a score test for an aggregated effect of d variables implemented in SKAT package for R.

Optimized sequence kernel association test an optimal combination of the sequence kernel association test and burden
test implemented in SKAT package for R.
5
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Table 1
Type I error rates from simulation (10000 replicates) for scenario 1 with normal error at each nominal
significance level α ∈ {0.1, 0.01, 0.001, 0.0001}. Column with (κ, ρ) describes the scenarios, where κ gives
n = 400κ and d = 50κ , and ρ specifies the correlation structure of X . Enet, proposed test for elastic net
(γ = 0.01); Lasso, proposed test for lasso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01);
Saturated, test under saturated model; Univariate, univariate test; SKAT, sequence kernel association test;
Burden, burden test; SKATO, optimized sequence kernel association test.
(κ, ρ) α Enet Lasso Ridge Saturated Univariate SKAT Burden SKATO

(1,0.3) 0.1 0.1068 0.1063 0.0945 0.1045 0.0797 0.1007 0.1019 0.1034
0.01 0.0124 0.0123 0.0101 0.0117 0.0092 0.0099 0.01 0.0102
0.001 0.0020 0.0019 0.0013 0.0018 0.0005 0.0007 0.0008 0.0007
0.0001 0.0004 0.0003 0.0001 0.0004 0.0001 0.0001 0.0001 0.0001

(1,0.7) 0.1 0.0966 0.0961 0.0790 0.0947 0.0338 0.1016 0.1018 0.1019
0.01 0.0112 0.0113 0.0081 0.0105 0.0044 0.0095 0.0097 0.0097
0.001 0.0016 0.0016 0.0011 0.0014 0.0005 0.001 0.001 0.001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001

(2,0.3) 0.1 0.0972 0.0964 0.0890 0.0982 0.0733 0.1012 0.1060 0.1040
0.01 0.01 0.0098 0.0083 0.0101 0.0076 0.0106 0.0103 0.01
0.001 0.0003 0.0003 0.0002 0.0003 0.0005 0.001 0.0011 0.0011
0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

(2,0.7) 0.1 0.0942 0.0939 0.0794 0.0956 0.0277 0.0972 0.0976 0.0971
0.01 0.0097 0.0097 0.0071 0.0103 0.0043 0.0099 0.0101 0.01
0.001 0.0013 0.0013 0.001 0.0013 0.0003 0.0009 0.0009 0.0009
0.0001 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000

(3,0.3) 0.1 0.0990 0.0980 0.0921 0.1007 0.0728 0.1048 0.1029 0.1043
0.01 0.0091 0.0091 0.0081 0.0096 0.0099 0.0111 0.0114 0.0113
0.001 0.0011 0.0011 0.0009 0.0011 0.0015 0.0009 0.0008 0.0008
0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001

(3,0.7) 0.1 0.0957 0.0948 0.0828 0.0992 0.0247 0.0979 0.0997 0.0991
0.01 0.0089 0.0087 0.0068 0.0094 0.0031 0.0101 0.0101 0.01
0.001 0.0009 0.0009 0.0009 0.0009 0.0006 0.001 0.001 0.001
0.0001 0.0004 0.0004 0.0001 0.0004 0.0002 0.0002 0.0002 0.0002

Two scenarios for correlation structures of X were considered.

Scenario 1 d explanatory variables X = (xT1, . . . , x
T
n )

T were generated as xi ∼ N(0, S) with zero mean vector and
variance–covariance matrix S independently for i = 1, . . . , n, in which S is the d × d matrix with off-diagonal
and diagonal elements are ρ and 1, respectively. Then, y = µ + ϵ, where ϵ is the error, and µ = Xβ0, where
β0 denotes the true regression coefficients. Three kinds of distributions for ϵ were considered: Each element of
ϵ was independent and identically generated from (i) standard normal distribution, (ii) normal distribution with
mean zero and standard deviation independent and identically generated from Exp(1)/1.5, and (iii) log-normal
distribution, (eZ − e1/2)/2 where Z is a standard normal random variate generated independently and identically.

Scenario 2 The data-generation model is the same as that in scenario 1 except that autocorrelation structure for the
variance–covariance matrix of X was used instead. Specifically, (j, k)-entry of the d × d matrix S is given by ρ|j−k|.

3.1. Type I error rate

For type I error simulation under scenarios 1 and 2, two correlation structures for S were considered, namely,
ρ ∈ {0.3, 0.7}. 10000 replicates were used for simulations and type I error rates were evaluated at each of four nominal
levels, α ∈ {0.1, 0.01, 0.001, 0.0001}. The results are given in Tables 1–2 for normal error with γ = 0.01, Supplementary
Tables S1–S2 for normal–exponential standard deviation error with γ = 0.01, Supplementary Tables S3–S4 for exponential
error with γ = 0.01, Supplementary Tables S5–S6 for normal error with γ = 0.1, Supplementary Tables S7–S8 for
normal–exponential standard deviation error with γ = 0.1, and Supplementary Tables S9–S10 for exponential error with
γ = 0.1. It can be seen that type I error rates were well controlled for all tests, including the proposed test applied to
elastic net, lasso, and ridge regression, regardless of error distribution as stated in Theorem 1. γ = 0.1 gave slightly lower
type I error rate than when γ = 0.01, but the difference was small in particular at lower nominal levels. As κ increases,
type I error rate of the proposed test tended to that of the saturated model as expected.

3.2. Power

For power simulation under scenarios 1 and 2, among d, only d0 = ⌊drb⌋ variables had nonzero regression coefficients
and remaining d − d0 variables had zero regression coefficients, where the d0 variables were randomly selected in each
simulation replicate. Two effect size distributions for nonzero coefficients were considered: (a) d0 nonzero regression
coefficients were independently generated from N(0, σ 2), with standard deviation σ = 0.005/r ; (b) d nonzero
b b b 0

6



M. Ueki Computational Statistics and Data Analysis 158 (2021) 107168
Table 2
Type I error rates from simulation (10000 replicates) for scenario 2 with normal error at each nominal
significance level α ∈ {0.1, 0.01, 0.001, 0.0001}. Column with (κ, ρ) describes the scenarios, where κ gives
n = 400κ and d = 50κ , and ρ specifies the correlation structure of X . Enet, proposed test for elastic net
(γ = 0.01); Lasso, proposed test for lasso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01);
Saturated, test under saturated model; Univariate, univariate test; SKAT, sequence kernel association test;
Burden, burden test; SKATO, optimized sequence kernel association test.
(κ, ρ) α Enet Lasso Ridge Saturated Univariate SKAT Burden SKATO

(1,0.3) 0.1 0.1028 0.1025 0.0914 0.0998 0.0994 0.0884 0.0913 0.0888
0.01 0.0089 0.0088 0.0075 0.0085 0.0105 0.0068 0.0089 0.0065
0.001 0.001 0.001 0.0009 0.001 0.0011 0.0002 0.001 0.0002
0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

(1,0.7) 0.1 0.1024 0.1019 0.0812 0.0980 0.0769 0.0983 0.1103 0.1037
0.01 0.0101 0.0101 0.0065 0.0091 0.0084 0.0074 0.0112 0.0099
0.001 0.0009 0.0009 0.0006 0.0008 0.001 0.0007 0.0013 0.0007
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

(2,0.3) 0.1 0.0945 0.0944 0.0874 0.0955 0.0944 0.0879 0.1 0.0957
0.01 0.0092 0.0092 0.0080 0.0096 0.0109 0.0070 0.01 0.0098
0.001 0.001 0.001 0.0009 0.0009 0.0006 0.0007 0.0013 0.0011
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001

(2,0.7) 0.1 0.0970 0.0968 0.0782 0.0987 0.0802 0.0929 0.1031 0.0968
0.01 0.0094 0.0093 0.0075 0.0096 0.0107 0.0095 0.0115 0.0094
0.001 0.0006 0.0006 0.0004 0.0006 0.0014 0.0003 0.0014 0.0011
0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002

(3,0.3) 0.1 0.0980 0.0972 0.0920 0.1008 0.0965 0.0878 0.1012 0.0968
0.01 0.0103 0.0101 0.0091 0.0106 0.0094 0.0071 0.0095 0.0086
0.001 0.0009 0.0009 0.0008 0.0009 0.0009 0.0005 0.0009 0.0007
0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

(3,0.7) 0.1 0.1005 0.0999 0.0816 0.1029 0.0842 0.0971 0.0998 0.0980
0.01 0.0105 0.0104 0.0068 0.0112 0.0097 0.0080 0.0113 0.0102
0.001 0.0007 0.0007 0.0001 0.0007 0.0012 0.001 0.0006 0.0012
0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0003 0.0000 0.0001

regression coefficients were randomly chosen from {−0.4/d1/20 , 0.4/d1/20 }. In addition, the following scenarios were
considered: four sparseness proportions, rb ∈ {0.05, 0.2, 0.5, 1}; two correlation structures for S , ρ ∈ {0.3, 0.7}. Power
was evaluated at three nominal levels, α ∈ {10−3, 10−5, 10−7

}. 500 replicates were used for all simulation runs.
The resulting power is given in Figs. 1–4 for normal error with γ = 0.01, Supplementary Figures S1–S4 for normal–

exponential standard deviation error with γ = 0.01, Supplementary Figures S5–S8 for exponential error with γ = 0.01,
Supplementary Figures S9–S12 for normal error with γ = 0.1, Supplementary Figures S13–S16 for normal–exponential
standard deviation error with γ = 0.1, and Supplementary Figures S17–S20 for exponential error with γ = 0.1. Overall,
the proposed test applied to the elastic net or lasso gave a high power uniformly for all simulation scenarios. Test applied
to the ridge regression showed a high power in some scenarios but resulted in low power in other scenarios. Univariate
and saturated tests gave high power in some scenarios but resulted in low power in other scenarios, showing both strength
and weakness depending on alternative hypotheses and hence lack of flexibility. Sequence kernel association, burden,
and optimized sequence kernel association tests gave lower power than the elastic net and lasso tests for many scenarios
except for some cases. In some scenarios (e.g. panel (2, 0.05, 0.7) in Fig. 2), the elastic net and lasso tests did not show
the best performance but the power was comparable to the test under the saturated model. Influence of γ and error
distribution was negligible. To summarize, the proposed test applied to the elastic net and lasso showed a high power in
a variety of alternative hypotheses, while the power of other tests highly depended on simulation scenarios.

4. Real data application

Performance of the proposed test was examined through a real genome-wide association study data publicly available
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessments can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. ADNI is an
ongoing, longitudinal study with primary purpose being to explore the genetic and neuroimaging information associated
with late-onset Alzheimer’s disease (LOAD). The study investigators recruited elderly subjects older than 65 years of age
comprising about 400 subjects with mild cognitive impairment (MCI), about 200 subjects with Alzheimer’s disease (AD),
and about 200 healthy controls. Each subject was followed for at least 3 years. During the study period, the subjects were
assessed with magnetic resonance imaging (MRI) measures and psychiatric evaluation to determine the diagnosis status

at each time point. After applying a standard quality-control, the dataset included 528984 SNPs in total. There were 166

7
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Fig. 1. Power in simulation studies (500 replicates) for scenario 1 with normal error under effect size scenario (a), evaluated at significance level
∈ {10−3, 10−5, 10−7

}. Triplet (κ, rb, ρ) on the top right in each panel denotes different setups: κ gives n = 400κ and d = 50κ , ρ specifies the
orrelation structure of X and rb denotes the proportion of nonzero variables. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for
asso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence
ernel association test; Burden, burden test; SKATO, optimized sequence kernel association test.

ontrols and numbers of cases with early MCI (EMCI), late MCI (LMCI), and AD were 67, 110, and 341, respectively, and
ere scored as 0, 2, 3, and 4. The score was considered as a continuous response variable.
Correlation is often present in genotype data due to linkage disequilibrium. To account for the correlation structure,

roup-wise analysis was considered in a sliding-window approach as frequently used in genetic studies (e.g. The UK10K
onsortium, 2015). Each of 22 autosomes was divided in small regions of 1 × 106 base-pair interval with 2 × 105 base-

pair overlap, which resulted in 2331 regions to be tested for association. For each region, eight tests considered in the
simulation studies were compared. Figs. 5 and 6 give the manhattan and quantile–quantile plots where γ = 0.01 was
used for the proposed test. Result under γ = 0.1 is given in Supplementary Figures S21 and S22.

The APOE4 gene located on chromosome 19 is one of known risk factors for Alzheimer’s disease. The corresponding
region was between 49056021 and 50456021 in base-pair position and included 205 variants. At the nominal family-
wise error rate of 5% using Bonferroni correction (i.e. raw p-value threshold before the correction being 0.05/2331 ≈

2.1 × 10−5), the proposed test applied to elastic net and lasso detected this gene region, in which both tests gave an
identical p-value of 3.4 × 10−49. (The p-value was identical both for γ = 0.01 and 0.1.) The univariate test also detected
this region with the minimum p-value 1.9 × 10−20 (after Bonferroni correction by the number of variants, 205, in the
region) and the other tests failed to detect at the nominal level. The p-values were 0.0003, 8.9 × 10−5, 0.00097, 0.0076,
and 0.001 for the ridge (γ = 0.01 and 0.1), saturated model test, sequence kernel association test, burden test, and
optimized sequence kernel association test, respectively. The elastic net and lasso tests produced much small p-value
than the univariate test. The tendency of giving the small p-value was also observed in the simulation studies.
8
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Fig. 2. Power in simulation studies (500 replicates) for scenario 1 with normal error under effect size scenario (b), evaluated at significance level
α ∈ {10−3, 10−5, 10−7

}. Triplet (κ, rb, ρ) on the top right in each panel denotes different setups: κ gives n = 400κ and d = 50κ , ρ specifies the
correlation structure of X and rb denotes the proportion of nonzero variables. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for
asso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence
ernel association test; Burden, burden test; SKATO, optimized sequence kernel association test.

For further insight, the variant rs429358 located at the base-pair position 50103781 in the gene region was the only
ariant that gave nonzero regression coefficient from the variable selection by the elastic net and lasso. On the other
and, the univariate test identified two variants which passed the genome-wide significance level: rs2075650 at base-pair
osition 50087459 (p-value was 1.9 × 10−11) and rs429358 (p-value was 9.5 × 10−23). Pearson’s correlation coefficient
etween two variants was 0.74. The high correlation suggested that one of variants was redundant and unnecessary. For
urther investigation, by applying multiple regression simultaneously using both rs2075650 and rs429358, the p-value for
he former regression coefficient was 0.53 while that for the latter was 6.6 × 10−13, implying that the former was less
seful and the latter was the main contributing factor. The above result coincides with the result from variable selection
y the elastic net or the lasso. Schaid et al. (2018) argue that univariate regression test cannot locate causal variants
nd penalized regression may be one of possible approaches for fine mapping, which in turn suggests that the proposed
ramework is also useful in this purpose.

In many typical genome-wide association studies, most variants are considered to follow the null hypothesis of no
ffect. In this real data application, the type I error rates of all tests were controlled as expected under the null hypothesis,
s shown in Fig. 6 and Supplementary Figure S22. The proposed test gave slightly deflated p-values and the proposed type
error control worked well in this real data application.
9
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Fig. 3. Power in simulation studies (500 replicates) for scenario 2 with normal error under effect size scenario (a), evaluated at significance level
∈ {10−3, 10−5, 10−7

}. Triplet (κ, rb, ρ) on the top right in each panel denotes different setups: κ gives n = 400κ and d = 50κ , ρ specifies the
orrelation structure of X and rb denotes the proportion of nonzero variables. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for
asso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence
ernel association test; Burden, burden test; SKATO, optimized sequence kernel association test.

. Concluding remarks

This paper presented a test procedure of conditional mean of zero through model sequence that connects models with
ifferent dimensionality from low to high complexity. Such model sequences commonly appear in practice, including
enalized regression (e.g. L1-, L2-, and nonconvex penalties) or even more complicated machine learning models. The
roposed procedure directly fits existing procedures to the proposed test without custom-made modification, and is
xpected to work well if the model sequence given by users contains models that can adequately capture the underlying
ata structure such as sparse regressions. Test combined with data-adaptive model search is attractive, particularly when
here is great uncertainty in the alternative hypothesis. Hypothesis test with data-adaptive modeling usually requires
omplicated null distribution, which sometimes turns out to be analytically intractable, and then computer-intensive
ethod, such as resampling, is required for computation. It is advantageous that the proposed procedure does not require
omputationally intensive method, where the generalized degrees of freedom are the only ingredient. The computational
fficiency enables high-dimensional data application as exemplified in a group-wise test problem for genome-wide
ssociation studies.
While the proposed test was demonstrated for linear regression models in this paper, the framework is in principle

pplicable to nonlinear models such as splines. Nonlinear models are worthy to apply to data which encounter low effect
ize and lack of replicability issues. In such cases, it is possible that typically used models are too simple to capture the
ata generating process, trying more sophisticated models rather than linear models may facilitate effect discovery.
10
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Fig. 4. Power in simulation studies (500 replicates) for scenario 2 with normal error under effect size scenario (b), evaluated at significance level
α ∈ {10−3, 10−5, 10−7

}. Triplet (κ, rb, ρ) on the top right in each panel denotes different setups: κ gives n = 400κ and d = 50κ , ρ specifies the
correlation structure of X and rb denotes the proportion of nonzero variables. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for
asso (γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence
ernel association test; Burden, burden test; SKATO, optimized sequence kernel association test.

There remain many topics regarding the optimality of the form (2). The proposed generalization of the Yanai’s gen-
ralized coefficient of determination was designed for inheriting the monotonically increasing property with dimension
nder µ = α1n for hypothesis testing. It would no longer be regarded as a model goodness measure unlike the original
anai’s generalized coefficient of determination. Also, it might be possible that other function of gdf0(gλ) is suitable in the
enominator instead of gdf0(gλ)1/2. Study on the form of the test statistic is an interesting research direction and shall be
onsidered in future.
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ppendix

roof of Theorem 1. To prove the theorem, for a given γ ∈ (0, 1), model indexes are partitioned into two index sets,
U = {j : gdf(j) < d1−γ

} and O = {j : gdf(j) ≥ d1−γ
}. The corresponding Yanai’s generalized coefficient of determination is

enoted as

r(j) = ∥̃y∥
−2̃yTg(j) (̃y)/gdf

1/2
(j) ,

for j = 1, . . . , J .
Let ĵ = argmaxjr(j). Then, the type I error of the proposed test procedure is written by

P(EU ∪ EO) ≤ P(EU ) + P(EO), (6)

where

EU = {∥̃y∥
2d1/2r(̂j) > qα(d)} ∩ {gdf(̂j) < d1−γ

},

EO = {∥P X̃ ỹ∥
2 > qα(d)} ∩ {gdf(̂j) ≥ d1−γ

}. (7)

Then, by the Bonferroni inequality,

P(EU ) ≤ P[∪j∈U {∥̃y∥
2d1/2r(j) > qα(d)}]

≤

∑
j∈U

P{∥̃y∥
2d1/2r(j) > qα(d)}

=

∑
j∈U

P{d1/2̃yTg(j) (̃y)/gdf
1/2
(j) > qα(d)}.

Since ỹTg(j) (̃y) ≥ 0 almost surely, by the Markov inequality,

P{d1/2̃yTg(j) (̃y)/gdf
1/2
(j) > qα(d)} ≤ d1/2E {̃yTg(j) (̃y)/gdf

1/2
(j) }/qα(d)

= d1/2gdf1/2(j) /qα(d).

For any j ∈ U , the right-hand side is further bounded above by d1/2d(1−γ )/2/qα(d), which converges to zero as d → ∞

because qα(d) ≥ d by assumption. Therefore, P(EU ) → 0 as d → ∞. Next, P(EO) is bounded above by P{∥P X̃ ỹ∥
2 > qα(d)},

hich is α due to (5). Consequently, the type I error rate is approximately bounded above by α as d → ∞.

roof of Theorem 2. To prove the theorem, note that ỹ = µ̃ + ϵ̃. Since ϵi are independently and identically distributed
random variables with mean 0 and variance σ 2

0 , E (̃ϵ) = E(Q 1nϵ) = 0, and E∥̃ϵ∥2
= E(ϵTQ 1nϵ) = σ 2

0 tr(Q 1n ) = O(n).
First, note that

max
λ

ỹTgλ (̃y)/gdf0(gλ)1/2 ≥ ỹTgλ∗ (̃y)/gdf0(gλ∗ )1/2 = {µ̃Tgλ∗ (̃y) + ϵ̃Tgλ∗ (̃y)}/gdf0(gλ∗ )1/2. (8)

For the second term in the parenthesis on the most right-hand side of (8), consider the decomposition:

ϵ̃Tgλ∗ (̃y) = ϵ̃Tgλ∗ (µ̃) + ϵ̃T {gλ∗ (̃y) − gλ∗ (µ̃)}.

For the first term, by the Cauchy–Schwarz inequality and (D2),

|̃ϵTgλ∗ (µ̃)| ≤ ∥̃ϵ∥∥gλ∗ (µ̃)∥ = Op(n1/2
∥µ̃∥),

and similarly, for the second term, by (D1) and (D2),

|̃ϵT {gλ∗ (̃y) − gλ∗ (µ̃)}| ≤ ∥̃ϵ∥∥gλ∗ (̃y) − gλ∗ (µ̃)∥ ≤ Kλ∗ ∥̃ϵ∥2
= Op(n),

both of them are of order o (∥µ̃∥
2) by (D4). Therefore, ϵ̃Tg ∗ (̃y) = o (∥µ̃∥

2).
p λ p
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Fig. 5. Manhattan plot from the result in real data application. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for lasso (γ = 0.01);
idge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence kernel association
est; Burden, burden test; SKATO, optimized sequence kernel association test.

Similarly, for the first term in the parenthesis on the most right-hand side of (8), consider the decomposition:

µ̃Tgλ∗ (̃y) = µ̃Tgλ∗ (µ̃) + µ̃T
{gλ∗ (̃y) − gλ∗ (µ̃)}.

or the second term, by (D1) and (D2),

|µ̃T
{gλ∗ (̃y) − gλ∗ (µ̃)}| ≤ ∥µ̃∥∥gλ∗ (̃y) − gλ∗ (µ̃)∥ ≤ ∥µ̃∥Kλ∗ ∥̃ϵ∥ = Op(n1/2

∥µ̃∥),

hich is of order op(∥µ̃∥
2) by (D4). Recalling (D2),

ỹTgλ∗ (̃y) = Cλ∗∥µ̃∥
2
+ op(∥µ̃∥

2). (9)

herefore, by (D3), the left-hand side of (8) becomes

max
λ

ỹTgλ (̃y)/gdf0(gλ)1/2 ≥ Cλ∗∥µ̃∥
2
+ op(∥µ̃∥

2). (10)

ence, the test statistic increases at the same or faster rate of ∥µ∥
2.

It needs to exclude the situation where the generalized degrees of freedom at the optimal λ, i.e. argmaxλ̃y
Tgλ (̃y)/gdf0

g )1/2 are greater than d1−γ ; otherwise, the test statistic reduces to that on the saturated model by definition of the
λ

13
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Fig. 6. Quantile–quantile plot from the result in real data application. Enet, proposed test for elastic net (γ = 0.01); Lasso, proposed test for lasso
γ = 0.01); Ridge, proposed test for ridge regression (γ = 0.01); Saturated, saturated model test; Univariate, univariate test; SKAT, sequence kernel
ssociation test; Burden, burden test; SKATO, optimized sequence kernel association test. For elastic net and lasso tests, plotted area on y-axis is
estricted up to 6 for visibility.

rocedure. To this end, for any λO such that gdf0(gλO ) ≥ d1−γ , it suffices that the following probability converges to 0:

P{max
λ

ỹTgλ (̃y)/gdf0(gλ)1/2 ≤ ỹTgλO (̃y)/gdf0(gλO )
1/2

}. (11)

ue to (10), (11) is bounded above by

P{Cλ∗∥µ̃∥
2
+ op(∥µ̃∥

2) ≤ ỹTgλO (̃y)/gdf0(gλO )
1/2

}. (12)

ote that, by (D3), λO ≤ λ∗, and µ̃TgλO (µ̃) = CλO∥µ̃∥
2 by (D2). Thus, an analogous argument in deriving (9) gives

ỹTgλO (̃y)/gdf0(gλO )
1/2

= {CλO∥µ̃∥
2
+ op(∥µ̃∥

2)}/gdf0(gλO )
1/2

≤ {CλO∥µ̃∥
2
+ op(∥µ̃∥

2)}/d(1−γ )/2,

n which the last inequality is due to gdf0(gλO ) ≥ d1−γ . Therefore, (12) is bounded above by

P[C ∗∥µ̃∥
2
+ o (∥µ̃∥

2) ≤ {C ∥µ̃∥
2
+ o (∥µ̃∥

2)}/d(1−γ )/2
], (13)
λ p λO p

14
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hich converges to 0 as d → ∞, and so as for (11). Consequently, (10) holds with probability tending to 1, implying that
the test statistic increases at the same or faster rate of ∥µ̃∥

2.
Now, it is ready to compare with the test under the saturated model. Note that gλ at λ = 0 gives the saturated model.

herefore, if

d1/2 max
λ

ỹTgλ (̃y)/gdf0(gλ)1/2 > d1/2̃yTg0 (̃y)/gdf0(g0)
1/2

= ∥P X̃ ỹ∥
2 (14)

olds with probability tending to 1 as d → ∞, the proposed test is more powerful than the test under the saturated
odel because the significance threshold qα(d) for the former is common with that for the latter. Since gdf0(g0) = d, due

o (14), it suffices to show that

P{max
λ

ỹTgλ (̃y)/gdf0(gλ)1/2 ≤ ỹTg0 (̃y)/d1/2} → 0, (15)

s d → ∞ due to gdf0(g0) = d ≥ d1−γ . By an analogous argument in (11)–(13) in which γ is replaced by δ, (15) holds as
→ ∞, showing the claim in (14).

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2021.107168.
upplementary Tables S1-S10 and Figures S1-S22 are included.
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